1456: 神经网络

Memory Limit:128 MB Time Limit:1.000 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

在兰兰的模型中,神经网络就是一张有向图,图中的节点称为神经元,而且两个神经元之间至多有一条边相连,下图是一个神经元的例子:

图中,X1-X3是信息输入渠道,Y1-Y2是信息输出渠道,C1表示神经元目前的状态,Ui是阈值,可视为神经元的一个内在参数。
神经元按一定的顺序排列,构成整个神经网络。在兰兰的模型之中,神经网络中的神经元分为几层;称为输入层、输出层,和若干个中间层。每层神经元只向下一层的神经元输出信息,只从上一层神经元接受信息。下图是一个简单的三层神经网络的例子。

兰兰规定,Ci服从公式:(其中n是网络中所有神经元的数目)

公式中的Wji(可能为负值)表示连接j号神经元和i号神经元的边的权值。当 Ci大于0时,该神经元处于兴奋状态,否则就处于平静状态。当神经元处于兴奋状态时,下一秒它会向其他神经元传送信号,信号的强度为Ci
如此.在输入层神经元被激发之后,整个网络系统就在信息传输的推动下进行运作。现在,给定一个神经网络,及当前输入层神经元的状态(Ci),要求你的程序运算出最后网络输出层的状态。

Input


输入文件第一行是两个整数n(1 ≤ n ≤ 100)和p。接下来n行,每行2个整数,第i+1行是神经元i最初状态和其阈值(Ui),非输入层的神经元开始时状态必然为0。再下面P行,每行由2个整数i,j及1个整数Wij,表示连接神经元i,j的边权值为Wij

Output


输出文件包含若干行,每行有2个整数,分别对应一个神经元的编号,及其最后的状态,2个整数间以空格分隔。仅输出最后状态大于0的输出层神经元状态,并且按照编号由小到大顺序输出。
若输出层的神经元最后状态均为 0,则输出 “NULL”。

Sample Input Copy

5 6
1 0
1 0
0 1
0 1
0 1
1 3 1
1 4 1
1 5 1
2 3 1
2 4 1
2 5 1

Sample Output Copy

3 1
4 1
5 1

HINT


每行至多25个字母,最多有2500行